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PERFORMANCE CHARACTERISTICS OF FLUSH AND SHIELDED

AUXILIARY EXITS AT MACH NUMBERS OF 1.5 TO 2.0

By Kaleel L. Abdalla

SUMMARY

The performance characteristics of several flush and shielded aux-

iliary exits were investigated at Mach numbers of I.S to 2.0_ and jet

pressure ratios from jet off to I0.

The results indicate that the shielded configurations produced bet-

ter over-all performance than the corresponding flush exits over the

Mach-number and pressure-ratio ranges investigated. Furthermore_ the

full-length shielded exit was highest in performance of all the config-

urations. The flat-exit nozzle block provided considerably improved

performance compared with the curved-exit nozzle block.

_Y_RODUCTION

For high Mach number turbojet aircraft_ studies of the inlet-engine

matching problem have shown that optimum powerplant thrust minus drag at

off-design speeds can be obtained if the inlet is permitted to capture

more air than the engine can handle (ref. I). In this "bypass" matching

method the excess air is returned to the free stream and the auxiliary

exit that performs this function must have high performance for good

over-all powerplant performance.

General performance characteristics and design criteria for auxil-

iary exits are reported in references 2 and 3. In the present investi-

gation the over-all performance of several auxiliary-exit designs was

obtained by mounting the exits on a simulated fuselage and by designing

the nozzles to handle typically required bypass flows.

Several flush exits and shielded oblique exits were investigated in

the NASA Lewis S- by C-foot supersonic wind tunnel to determine the thrust

and drag performance with the simulated fuselage. Data were taken at Mach

numbers of 2.0_ 1.8_ and l.S at zero angle of attack. The ratio of jet

total pressure to free-stream static pressure was varied from jet off
to i0.
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SYMBOLS

cross-sectional area

ideal exit area of convergent nozzle

drag

exit nozzle-block drag 3 based on pzojected area

shield drag_ based on projected area

thrust

ideal jet thrust of convergent nozzle

jet thrust

gravitational constant_ 52.17 ft/s_c 2

Mach number

total pressure

jet pressure ratio, jet total to f_ee-stream static pressure
ratio

static pressure

ideal exit static pressure of convergent nozzle

ideal exit velocity of convergent 1ozzle

weight flow rate_ Ib/sec

exit flow angle_ deg

Subscripts:

b

i

J

t

W

0

base

ideal

Jet exit conditions

throat conditions

conditions on exit nozzle-block wall

free-stream conditions
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APPARATUS

A schematic diagram of the auxiliary-exit-model installation in the
wind tunnel is shownin figure I_ and model details are shownin figure
2. The model consisted of a I0o half-angle conical nose section and an
S-inch outside diameter cylindrical body. The auxiliary-exit shields
and flush exits were mounted in the aft-section of the model as shown
in figure 2. The model total length was 71.0 inches. Predried air was
supplied to the model internally through the support struts.

Figure 2 shows the grounded and ungrounded sections of the model as
well as the strain-gage balance and pressurized bellows. It can be seen
that the balance measures forces on the entire external skin and the
base as well as the internal nozzle forces. A description of the balance
system is given in reference _.

Configurations

The auxiliary exit configurations consisted of five shielded and
flush exits combinedwith two exit nozzle-block designs. The nozzles
were basically two dimensional and were faired into the axisymmetric
fuselage. The two nozzle-block designs are shownschematically in fig-
ure 3. The auxiliary-exit configurations are drawn to scale in figure 4_
and nozzle areas are also shownin the table in this figure. The flush-
type auxiliary exit is designed to simulate a fully open (model I) and a
partially open (models 2 and 3) sliding-door bypass mechanism. The fully
shielded exits (models 6 and 7) simulate a hinged bypass with full side
fairings opened 15° into the airstream. Two combinations of these types
of exits are also shown. Onearrangement is a partially opened sliding
door with side fairings swung15° to the free stream (models _ and 5).
The second is a full-length curved-lip shield with partial side fairings
hinged IS° to the stream (model 8). Photographs of typical configura-
tions are shownin figure S.

Instrumentation and Data Reduction

The skin friction and pressure drag of the basic model DO was de-
termined with the exit sealed. The base drag was determined from eight
static orifices and from the base area Ab. For all configurations at
each pressure ratio_ thrust minus drag was obtained from

Fj - D = Fbalance - nO - (Pb - PO)Ab

For the shielded configurations_ shield drag was computed from nine area-

weighted static orifices_ and thrust was obtained by adding this drag to
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the thrust minus drag. For all configuratiDns the nozzle blocks were
instrumentated with 15 static orifices alon_ the centerline (see fig. 3).

Net Jet weight flow was determined from the difference between the
flow through the sharp-edged orifice plates in the air-supply line and
and the calibrated-model leakage flow. Total temperature was obtained
from thermocouples located in the pressure chamber inside the model_
assuming constant temperature to the exit station. Internal-flow total
pressure was averaged from a nine-tube totsl-pressure rake located at
station A6.75 (see fig. S).

Ideal convergent nozzle thrust was found from

w
Fic -- vti + (Pei- Po)Ati

where Vti_ Pei_ and Ati were computed from the measured weight flow_

the measured temperature_ and the measured jet total pressure assuming

isentropic flow and M t = 1.0. (Flow coefficients were 1.0 within ex-

perimental accuracy of data.)

Convergent thrust was used as a refer_nce because the nozzles tested

were basically convergent. For convenienc_ the conversion factor between

ideal convergent thrust and ideal thrust i_ plotted in figure 6.

GENERAL CONSIDER_!IONS

The flush and the shielded exits repr,_sent two basically different

approaches to the auxiliary-exit problem. With the flush exits (see fig.

7(a)) pressures greater than ambient on th,_ nozzle block just downstream

of the throat represent drag. At jet pressure ratios above approximately

2_ therefore_ this drag will penalize the oerformance of the flush con-

figurations. The drag is increased further by the external stream be-

cause of the higher local pressure behind _he stream shock (fig. 7(a)).

The higher local pressures prevent part of the expansion which would have

occurred without stream effects 3 and result in higher nozzle-block pres-

sures as indicated in the typical pressure distributions of figure 7(a).

Since the area between any curve and a horLzontal line at the particular

value of po/Pj is proportional to nozzle-block drag_ it is clear that
with an external stream the drag is higher and therefore thrust minus

drag is lower. For the case illustrated tie difference is proportional

to the sum of areas A and B (fig. 7(a)).



With the fully shielded exits, jet-stream interaction has little or
no effect on nozzle-block pressures (see fig. 7(b)). Also, side fairings
on the full shields prevent escape of the exit flow around the sides (see
fig. 5(a)). There is, however_ drag on the shield_ which must be com-
pared with the nozzle-block drag of the flush exits. For both flush and
shielded exits, of course_ there are added losses resulting from the non-
axial exit.

RESULTSANDDISCUSSION

Flush Auxiliary Exits

The thrust-minus-drag characteristics for the three flush auxiliary
exits are presented in figure S. These flush exits exhibit relatively
poor performance over the entire operating range investigated.

The poor performance must result from the nozzle-block drag_ as well
as from the nonaxial exit_ as mentioned in the previous section. For the
flush exits the nozzle-block drags, because of nozzle geometry, are higher
than would be estimated by centerline pressure distributions. Since the
auxiliary exits are basically two-dimensional_ matching the exits to the
axisymmetric fuselage resulted in considerably different nozzle-block
cross sections near the sides comparedwith the centerline cross sections
shown in figure _ (see fig. S(c)). As a result, jet flow away from the
centerline, downstreamof the throat_ will not expand to ambient static
pressures along the nozzle-block. On a unit-area basis_ therefore, these
higher static pressures awayfrom the centerline produce higher nozzle-
block drags than would be obtained from centerline pressure distributions.

In order to illustrate the relative magnitude of this effect on per-
formance the centerline pressure distributions for model i_ shown in fig-
ure 9_ were used to computedrag. Then_ assuming a theoretical nozzle
thrust coefficient of 0.98 and an effective flow angle at the throat of
19°_ the thrust coefficient was 0.927 (0.98 × cos 19°). The resulting
estimated thrust minus drag is shownin figure 8 as the dashed line. It
is clear that the off-centerline pressures must produce greater drag
than the centerline pressures.

Shielded Auxiliary Exits

The thrust and drag characteristics for the five shielded auxiliary
exits are presented in figure I0. The thrust-minus-drag performance of
the shielded configurations was considerably better than that of the
corresponding flush exits. (Comparefigs. i0 and 8.) Furthermore3 the
best thrust amd thrust-minus-drag characteristics were obtained with
full-length shielding because the exit flow expandedalong the



nozzle-block wall with little or no jet-s;ream interaction, as exempli-
fied by the exit nozzle-block pressure di_tributions of figure ii (solid
curve). The partially shielded configura_;ions 3 of course_ were suscep-
tible to somejet-stream interaction_ although the severity of this ef-
fect was less for these configurations than for the flush exits because
of the oblique shields and side fairings.

For the curved-lip shielded exit onlF part of the shield had side
fairings (see fig. S(b))_ and the nozzle-block pressure distribution
(dashed curve of fig. ii_ showsthe more rapid expansion of the jet as
as well as somestream interaction at low pressure ratios. The over-all
performance of this configuration at the !_igher pressure ratios waspe-
nalized. Goodthrust-minus-drag characteristics_ however_ were main-
tained at low pressure ratios. Thus, the improved over-all thrust-minus-
drag performance of the shielded exits results from the fact that the
shield drags were lower than the nozzle-bLock drags of the flush exits.

Type of Exit Nozzl,_ Block

The effect of the type of exit nozzl,_-block design can be seen by
the comparison of flush and shielded configurations investigated with
both the flat-exit nozzle block and the c_Irved-exit nozzle block. (Com-
pare the thrust-minus-drag performance of models 2 and 3 (fig. 8)_ models
4 and 5_ and models 6 and 7 (fig. I0).) in general, the over-all per-
formance of a configuration with the flat nozzle block is appreciably
better than that of the similar configura;ion with the curved nozzle
block.

SUMMARYOFRES_LTS

The investigation of the performance characteristics of several
flush and shielded exhaust nozzles in a s_personic stream indicates:

I. The shielded oblique exhaust nozz.es produce a higher thrust-
minus-drag performance than the correspom[ing flush exits.

2. Although for the curved-lip shieL[ed configuration the low pres-
sure ratio thrust-minus-drag performance _ras improved; the best over-all
performance was obtained with full-length shielding.

3. The performance of a configuration1 with the flat-exit nozzle
block is appreciably better than that of _Lsimilar configuration with
the curved-exit nozzle block.

Lewis Research Center
National Aeronautics and Space Administration

Cleveland; 0hio_ February 2G; it,S8
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(b) Curved-exit nozzle .block. ' "Y,U /_

Fi['<iz'e 2. - Schematic diaguzam of exit nozzle block showing

location of static orificies. Cen+_erline cross section.
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I
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Figure (.. - Concluded. CozC'igurat:ons and nozzle '4rerLs.
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(a) Model 6. Fully shielded exit with flat nozzle block.

(b) Model S. Curved-lip-shielded exit with flat nozzle block.

Figure _7. - Typical auxiliary-exit configurations.
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(c) Model 2. Two-dimensional nozzle _ized to the axisymmetric

fuselage. (Retouched photograph. )

Figure 5. - Concluded. Typical auxiliary-exit configurations.
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